Package: nscancor 0.7.0-6

nscancor: Non-Negative and Sparse CCA

Two implementations of canonical correlation analysis (CCA) that are based on iterated regression. By choosing the appropriate regression algorithm for each data domain, it is possible to enforce sparsity, non-negativity or other kinds of constraints on the projection vectors. Multiple canonical variables are computed sequentially using a generalized deflation scheme, where the additional correlation not explained by previous variables is maximized. nscancor() is used to analyze paired data from two domains, and has the same interface as cancor() from the 'stats' package (plus some extra parameters). mcancor() is appropriate for analyzing data from three or more domains. See <https://sigg-iten.ch/learningbits/2014/01/20/canonical-correlation-analysis-under-constraints/> and Sigg et al. (2007) <doi:10.1109/MLSP.2007.4414315> for more details.

Authors:Christian Sigg [aut, cph, cre], R Core team [cph, ctb]

nscancor_0.7.0-6.tar.gz
nscancor_0.7.0-6.zip(r-4.5)nscancor_0.7.0-6.zip(r-4.4)nscancor_0.7.0-6.zip(r-4.3)
nscancor_0.7.0-6.tgz(r-4.4-any)nscancor_0.7.0-6.tgz(r-4.3-any)
nscancor_0.7.0-6.tar.gz(r-4.5-noble)nscancor_0.7.0-6.tar.gz(r-4.4-noble)
nscancor_0.7.0-6.tgz(r-4.4-emscripten)nscancor_0.7.0-6.tgz(r-4.3-emscripten)
nscancor.pdf |nscancor.html
nscancor/json (API)
NEWS

# Install 'nscancor' in R:
install.packages('nscancor', repos = c('https://chrsigg.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/chrsigg/nscancor/issues

On CRAN:

3.81 score 13 stars 7 scripts 178 downloads 5 exports 0 dependencies

Last updated 2 years agofrom:8f3eb56a57. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:acorcolCardinalitiesmacormcancornscancor

Dependencies: