# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "nsprcomp" in publications use:' type: software title: 'nsprcomp: Non-Negative and Sparse PCA' version: 0.5.1-2 doi: 10.1145/1390156.1390277 identifiers: - type: doi value: 10.32614/CRAN.package.nsprcomp abstract: Two methods for performing a constrained principal component analysis (PCA), where non-negativity and/or sparsity constraints are enforced on the principal axes (PAs). The function 'nsprcomp' computes one principal component (PC) after the other. Each PA is optimized such that the corresponding PC has maximum additional variance not explained by the previous components. In contrast, the function 'nscumcomp' jointly computes all PCs such that the cumulative variance is maximal. Both functions have the same interface as the 'prcomp' function from the 'stats' package (plus some extra parameters), and both return the result of the analysis as an object of class 'nsprcomp', which inherits from 'prcomp'. See and Sigg et al. (2008) for more details. authors: - family-names: Sigg given-names: Christian email: christian@sigg-iten.ch orcid: https://orcid.org/0000-0003-1067-9224 preferred-citation: type: conference-paper title: Expectation-Maximization for Sparse and Non-Negative PCA authors: - family-names: Sigg given-names: Christian D. - family-names: Buhmann given-names: Joachim M. collection-title: Proc. 25th International Conference on Machine Learning collection-type: proceedings year: '2008' doi: 10.1145/1390156.1390277 conference: name: Proc. 25th International Conference on Machine Learning repository: https://chrsigg.r-universe.dev repository-code: https://github.com/chrsigg/nsprcomp commit: 036d20b2eb34f91348a0892aed0d9cc63c41a9c3 url: https://sigg-iten.ch/research/ contact: - family-names: Sigg given-names: Christian email: christian@sigg-iten.ch orcid: https://orcid.org/0000-0003-1067-9224