# --------------------------------------------
# CITATION file created with {cffr} R package
# See also: https://docs.ropensci.org/cffr/
# --------------------------------------------
cff-version: 1.2.0
message: 'To cite package "nsprcomp" in publications use:'
type: software
title: 'nsprcomp: Non-Negative and Sparse PCA'
version: 0.5.1-2
doi: 10.1145/1390156.1390277
identifiers:
- type: doi
value: 10.32614/CRAN.package.nsprcomp
abstract: Two methods for performing a constrained principal component analysis (PCA),
where non-negativity and/or sparsity constraints are enforced on the principal axes
(PAs). The function 'nsprcomp' computes one principal component (PC) after the other.
Each PA is optimized such that the corresponding PC has maximum additional variance
not explained by the previous components. In contrast, the function 'nscumcomp'
jointly computes all PCs such that the cumulative variance is maximal. Both functions
have the same interface as the 'prcomp' function from the 'stats' package (plus
some extra parameters), and both return the result of the analysis as an object
of class 'nsprcomp', which inherits from 'prcomp'. See
and Sigg et al. (2008) for more details.
authors:
- family-names: Sigg
given-names: Christian
email: christian@sigg-iten.ch
orcid: https://orcid.org/0000-0003-1067-9224
preferred-citation:
type: conference-paper
title: Expectation-Maximization for Sparse and Non-Negative PCA
authors:
- family-names: Sigg
given-names: Christian D.
- family-names: Buhmann
given-names: Joachim M.
collection-title: Proc. 25th International Conference on Machine Learning
collection-type: proceedings
year: '2008'
doi: 10.1145/1390156.1390277
conference:
name: Proc. 25th International Conference on Machine Learning
repository: https://chrsigg.r-universe.dev
repository-code: https://github.com/chrsigg/nsprcomp
commit: 036d20b2eb34f91348a0892aed0d9cc63c41a9c3
url: https://sigg-iten.ch/research/
contact:
- family-names: Sigg
given-names: Christian
email: christian@sigg-iten.ch
orcid: https://orcid.org/0000-0003-1067-9224